
 

Improving Industrial 
Functional Safety 
Compliance with High 
Performance Supervisory 
Circuits: Using SIL-Rated 
Components—Part 2 
Bryan Angelo Borres , Product Applications Senior Engineer

Abstract
Diagnostic functions, such as power supply monitors, play a crucial role in identifying hazardous failures in 
electronic, electrical, and programmable electronic safety-related systems (SRS). While such components 
are not mandatory to be functional safety rated for compliance with IEC 61508 under the current revision, uti-
lizing a functional safety-compliant part when designing an SRS offers several advantages. For this reason, 
this second part of the series discusses six benefits of using a SIL-rated power supply monitor when design-
ing a system covering industrial functional safety.

Introduction
This is the second article of the series discussing industrial  
functional safety compliance through high performance voltage 
supervisory circuits is discussed. This article explores the sig-
nificance of employing functional safety-compliant diagnostic  
functions for compliance. It will cover six key aspects: availability  
of failure mode, effects, and diagnostics analysis (FMEDA)  
information; integrated safety features; on-chip diagnostics; 
future-proofing against the upcoming revision of the IEC 61508; 
consideration of other standards; and the views of external asses-
sors, all underscoring the benefits of using SIL-rated power supply 
monitors such as the MAX42500.

The Basic Functional Safety Standard 
and Beyond
Part 1 of this series highlighted the role of diagnostics in meet-
ing both the qualitative and quantitative demands of the basic 
functional safety standard as seen in Figure 1. For qualitative 
considerations, the implementation of power supply monitors is 
mandatory regardless of the safety integrity level (SIL). But for 
quantitative requirements, there are two main considerations: 
reliability predictions and architectural constraints. Reliability 
predictions assess the system’s average probability of danger-
ous failure rate, which can either be the average probability of 
dangerous failure on demand (PFDavg) for low demand operation 

TECHNICAL ARTICLE 

https://www.analog.com/en/index.html
https://www.analog.com/en/products/max42500.html
https://www.analog.com/en/resources/analog-dialogue/raqs/raq-issue-226.html


2

or the average frequency of dangerous failure per hour (PFH) 
for high demand operation. For the purpose of discussion,  
PFH is used. Meanwhile, architectural constraints are affected  
by the safe failure fraction (SFF) and redundancy requirements. 
The integration of diagnostic functions enhances these met-
rics by identifying random hardware failures. Consequently, any 
supervisory IC that meets the required specifications can be 
used, as SIL ratings are determined at the system level.

Implementing a safety project often requires more effort com-
pared to a nonsafety project due to the stringent demands of the 
safety lifecycle. However, there are effective strategies that can 
enhance both the project timeline and functional safety com-
pliance. One such strategy is the use of components that have 
already been developed according to the IEC 61508. Although 
not mandatory under IEC 61508, this approach offers several  
advantages that exceed the basic functional safety standard 
requirements. These advantages include the following.

It Has Its Own FMEDA
Power supply monitors that adhere to IEC 61508 standards 
include a safety manual detailing their FMEDA. The FMEDA 

process involves examining the failure modes of a system to  
identify the potential failure causes and their effects on the sys-
tem (Figure 2). Whether applied at the component level or at the 
system level, an FMEDA facilitates the demonstration of compli-
ance with a functional safety standard such as the IEC 61508, 
addressing both its qualitative and quantitative requirements.
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Figure 2. An FMEDA block diagram.2

The requirements for a safety manual for compliant items are 
outlined in IEC 61508-2:2010. This information facilitates the IC 
integrator to more easily complete their FMEDA. 
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Figure 1. Diagnostics through the lens of IEC 61508:2010.1
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Annex D Section D.2.2 states that for every function, the safety 
manual shall:

(d) contain the failure modes of the diagnostics, internal to the 
compliant item (in terms of the behavior of its outputs), due to 
random hardware failures, that result in a failure of the diagnos-
tics to detect failures of the function;

(e) for every failure mode in (c) and (d) the estimated failure rate. 

Section 7.4.9.4 Item (j) states that the failure rate of the diagnos-
tics due to hardware failures information shall be available for 
each safety-related element that is liable to random hardware 
failure requirements for E/E/PE system implementation.

This information streamlines the safety analysis process for sys-
tem architects, as the failure rates provided in the safety manual 
can be directly applied to create the system-level FMEDA. If the 
component FMEDA’s assumptions differ from the system design-
er’s use case, the existing analysis documents can be adapted 
for recalculations and further analysis at the system level.

It Has Integrated Safety Features Scoping 
Several Diagnostic Functions
Selecting the right part for an application usually involves con-
sidering factors such as component cost, board size, system 
operation, and features. With functional safety compliance in 
mind, another factor comes into play—the complexity of the 
safety analyses such as those found in the FMEDA. Figure 3 
shows how a highly integrated part reduces board size and 
component count as well as simplifies the system’s FMEDA. 
Discrete solutions, which involve more components, necessi-
tate a more extensive consideration of failure modes and rates 
in the analyses. On the other hand, integrated solutions that 
comply with functional safety standards tend to have fewer rows 
in the FMEDA document. For instance, the MAX42500 shown on  
the right of Figure 3 consolidates the functionalities of the three 
separate parts on the left. Being a SIL 3-rated device already has 
its lambda values available in its FMEDA, thus simplifying the 
necessary analyses and calculations for the system’s FMEDA.
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It Has Its Own Diagnostics to Detect Its Own 
Random Hardware Failures
Components developed in compliance with IEC 61508 incorpo-
rate a specific SFF, λDU (dangerous undetected failure rate), and  
systematic capability, which significantly enhance its reliabil-
ity over noncompliant devices, particularly in terms of either  
PFDavg and/or PFH, thanks to on-chip diagnostics. These diag-
nostics are engineered to minimize dangerous undetected 
failures that are considered during the part’s development, 
targeting compliance with a SIL. Consequently, parts without 
such diagnostics typically exhibit significantly worse reliability 
predictions due to the absence of mechanisms to detect and  
mitigate internal failures. 

Consider the MAX42500 shown in Figure 4. This highly integrated 
device features multiple blocks and pins, and it is equipped with 
diagnostics to identify random hardware failures that could 
affect these components. The first part of this series discussed 
how high performance voltage supervisors such as power  
supply monitors contribute to enhancing functional safety com-
pliance by improving failure detection, which in turn boosts  
systematic integrity, PFH, and SFF. Similarly, compliant devices 
demonstrate enhanced performance with lower rates of danger-
ous undetected failures.

Figure 5 shows a typical budget allocation for the PFH require-
ment for a safety function within a safety-related system aiming 
to comply with IEC 61508. This shows that diagnostic compo-
nents with a lower rate of dangerous undetected failures not 
only improve a system’s reliability but also permit a more flexible 
allocation of the PFH budget across other system components.
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Figure 5. A PFH budget allocation example.2

It Is Future-Proof Against IEC 61508’s Upcom-
ing Revision
Currently, the basic functional safety standard—IEC 61508:2010—
does not mandate a diagnostics on diagnostics for nonredundant 
systems nor a systematic capability (SC) that is one level below 
that required for the safety function for diagnostics.3 However, 
the upcoming revision of the standard is expected to introduce 
several significant changes:
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Figure 4. The MAX42500’s (a) functional block diagram and (b) diagnostics.



5

 • Explicit warnings about the use of on-chip diagnostics to 
detect failures on the same chip unless the IC was developed 
in compliance with IEC 61508. 

 • Requirements that align with the automotive ISO 26262 stan-
dard concerning latent fault metrics. 

 • A specific SFF for diagnostic functions.
 • An SC requirement for diagnostic circuitry. 

Therefore, using ICs developed in compliance with IEC 61508, 
such as the MAX42500, will help future-proof the design in antic-
ipation of these potential updates.

It Considers Other Countries’ Safety Standards 
and Directives
System designers who want their products to be used in a 
specific country must ensure compliance with the respective 
national laws and regulations. Different countries have their 
unique safety regulations, and many have already adopted their 
versions of the IEC 61508 standard, such as Australia’s AS 61508,4 
the United Kingdom’s BS EN 61508,5 and Canada’s CSA 61508.6 
As the basic functional safety standard undergoes revisions, 
related sector-specific standards and national laws and regula-
tions are expected to be updated accordingly.

Notably, the use of SIL-rated monitors is mandated in 
some countries, especially within the European Union. This 
requirement stems from the Machine Directive 2006/42/EC 
Recommendations for Use,7 which necessitates SIL-rated 
monitors for single-channel systems. The directive specifies 
that failures in diagnostic functions, which could directly lead 
to a failure in the safety function or element, should be treated 
as if they were failures in the safety function or element itself. 
Additionally, in scenarios involving two or more faults that cause 
a critical state related to the safety function or element, one of 
the following approaches shall be applied:

1. The diagnostic functions are considered as separate func-
tions and must meet the criteria as shown in Table 1.

Table 1. Systematic Capability Requirements 
for the Application of Diagnostic Functions7

Safety Function Diagnostic Function

SIL 1 Basic safety principles

SIL 2 SIL 1

SIL 3 SIL 2

2. A failure in a diagnostic function that increases the prob-
ability of the safety function does not operate correctly when 
required shall be classified as a dangerous failure according 
to IEC 61508-4:2010, clause 3.6.7. A failure in a diagnostic 
function that leads directly to the safe state shall be classified 
as a safe failure according to IEC 61508-4:2010, clause 3.6.8.7

See Tom Meany’s blog post “Diagnostics on Your Diagnostics” 
for insights on how various sector-specific standards perceive  
SIL-rated diagnostics.

It Eases Functional Safety Assessment
Applications requiring higher SIL levels also necessitate greater 
independence. This is shown in IEC 61508-1:2010 Table 4 and 
Table 5, which show that the required degree of independence 
for functional safety assessments varies based on the conse-
quence or SIL/SC requirement, ranging from an independent 
person to an independent organization. Thus, the highest degree 
of independence requires an independent organization, such 
as external assessors, to verify functional safety compliance. In 
turn, this emphasizes the importance of understanding the per-
spectives of external assessors on functional safety. 

Take, for instance, TÜV SÜD, a recognized independent asses-
sor in Functional Safety. The organization says that the SIL 
requirements for the entire safety function shall apply to diag-
nostics as well.8 Similarly, Exida emphasizes the importance 
of developing safety-critical components according to the 
IEC 61508-compliant process.9 With diagnostics central to  
functional safety compliance as discussed in part 1 of this  
series, selecting SIL-rated monitors not only improves FS compli-
ance but also expedites the certification process through faster  
external assessment. 

Conclusion
The primary objective of this article is to explore the importance 
of using functional safety-rated monitors when complying with 
functional safety standards. Initially, it delves into the funda-
mental requirements of the IEC 61508’s standard, emphasizing 
the significance of accessible component-FMEDA information 
in the safety manual of the compliant parts. Secondly, it illus-
trates the advantage of integrating a SIL-rated power supply 
monitor, which not only reduces the board size but also simpli-
fies safety analysis compared to discrete solutions. Thirdly, 
the article discusses the role of extensive on-chip diagnostics 
in a SIL-rated diagnostic IC in minimizing the rate of danger-
ous undetected failures and its influence on the overall system’s 
PFH budget. Fourthly, it demonstrates how using such parts can 
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future-proof safety-related system designs in anticipation of  
the upcoming revision to the IEC 61508 standard. Fifthly,  
it connects the need for SIL-rated monitors with the growing  
adoption of the basic functional safety standard by various 
countries and the perspectives of sector-specific standards 
such as the Machinery Directive. Lastly, it references the posi-
tions of renowned functional safety assessors on the use of  
IEC 61508-compliant diagnostics.

Stay tuned for the next article in the series where we will discuss 
features of diagnostic functions that are crucial in designing  
an SRS.
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