Infineon, Worksport collaborate on GaN for lighter, cheaper portable power stations

0
87

Infineon Technologies has announced a collaboration with Worksport. Worksport will use Infineon’s GaN power semiconductors GS-065-060-5-B-A in the converters for its portable power stations to increase efficiency and power density. Enabled by Infineon’s GaN transistors, the power converters will be lighter and smaller in size with reduced system costs. In addition, Infineon will support Worksport in the optimization of circuits and layout design to further reduce size and increase power density.

“Infineon’s high-quality standard and solid supply chain provide us with the best components to ensure power-dense converters for our COR system product line and contribute to a first-class end product performance,” said Worksport CEO Steven Rossi. The company’s COR battery system can be integrated into a pickup truck or recharged by any solar panel or wall outlet. By replacing the former silicon switch in the power converter with Infineon’s GaN power semiconductors and operating the transistors at higher switching frequency, Worksport will be able to reduce the battery system weight by 33 percent and system costs by up to 25 percent. 

The working relationship with Infineon will also help Worksport to reduce CO2 in the manufacturing process. GaN is proving itself as a game-changing technology across many markets and applications. For example, in data centers, GaN solutions have a global energy savings potential of 21 TWh annually, 10 million tons of Carbon Dioxide (CO2) equivalent. “In order to further drive electrification and decarbonization, the industry’s power designs require innovation,” said Johannes Schoiswohl, Business Line Head GaN Systems of Infineon’s Power & Sensor Systems Division. “With our GaN power semiconductors we enable Worksport to create the next generation portable power stations that users require.” 

Infineon’s GS-065-060-5-B-A is an Automotive-grade 650 V enhancement mode GaN-on-Silicon power transistor. It offers very low junction-to-case thermal resistance for demanding high power applications such as on-board chargers, industrial motor drives and solar inverters. Furthermore, it features simple gate drive requirements (0 V to 6 V) and a transient tolerant gate drive (-20 / +10 V).